

The Exploratory Media Lab
MARS Media Arts & Research Studies

netzspannung.org
Wissensraum für digitale Kunst und Kultur

PAAL, Stefan
KAMMÜLLER, Reiner
FREISLEBEN, Bernd

Java Class Separation for Multi-
Application Hosting

published on netzspannung.org:
http://netzspannung.org/about/mars/projects/pdf/awake-2002-2-en.pdf
14 March 2005

First published: Proceedings of the 3rd Conference on Internet Computing
(IC 2002). Las Vegas, USA. CSREA 2002. pp. 259-266.

Java Class Separation for Multi-Application Hosting

Stefan Paal
Fraunhofer Institute for Media Communication

Schloss Birlinghoven
D-53754 St. Augustin, Germany

Reiner Kammüller, Bernd Freisleben
Department of Electrical Engineering

and Computer Science
University of Siegen

Hölderlinstr. 3, D-57068 Siegen, Germany

Abstract. Java applications are usually executed
within a Java Virtual Machine (JVM), which is part
of the Java Runtime Environment (JRE). In this
scenario, hosting more than one application at the
same time within a JVM is not originally supported,
and customizable mechanisms to manage different
application classes and related byte codes with the
same class name concurrently are still lacking. In this
paper, we present a novel approach to Java class
separation used to transform the native JVM into a
multi-application environment. Our proposal is based
on introducing so called class spaces, which enable
class selection using properties other than the class
name and which arrange also loaded classes within a
JVM in a customizable manner. The feasibility of the
approach is demonstrated by presenting a
middleware framework in which applications needing
the same classes in different versions are configured
dynamically and hosted concurrently.

Keywords. Java Class Separation, Java Virtual
Machine, Java Class Loading, Application Hosting,
Internet Middleware

1. Introduction
The execution of a Java application requires the
so called Java Runtime Environment (JRE) and
its Java Virtual Machine (JVM). However,
before a Java application can be started by the
JVM, the related byte code for the application
classes must be located, loaded and resolved
using the dynamic class loading approach of
Java [1]. For this purpose, the native JVM
delegates the class loading to the so called
system class loader, which locates the byte code
using an environment variable CLASSPATH
and the fully-qualified class name (FQCN) of the
required classes, which is composed of the
package name and the class name itself [2,3]. In
addition, there may be further class loaders,

which are user-defined and make their own
arrangements of how the byte code is located and
loaded. But common to all class loaders is the fact
that each can load the same class only once during
its lifetime, whereby two classes are assumed to be
equal when their FQCN are equal [4].
 This is usually suitable since the native JVM
and its system class loader have been designed to
host and manage only a single application at the
same time and which is executed by the underlying
operating system within a single process. For this
reason, further Java applications have to be started
in additional JVM. Though this is well-suited for
stand-alone applications running on a local
machine with one user interface, it causes
problems when a multi-application environment
like an application server should be configured to
run more than one application, possibly requiring
the same classes in different variants concurrently
and requesting to share data across applications
within a single JVM. As mentioned above, the
problems are caused by the fact that a class loader
can load a class only once during its lifetime, since
all loaded classes are put within so called
namespaces, each associated with a class loader,
where no two classes with the same FQCN can co-
exist.
 Due to this fact, there are implementations
using more than one class loader, each managing
its own namespace and able to load the same class
concurrently to another class loader. That way,
they avoid conflicts with classes having the same
FQCN and can host applications in different
variants concurrently. They are even able to reload
the application code in a new namespace
dynamically when it has been changed in the byte
code repository. Although this resolves the multi-
application problem, it raises another problem,
since it separates all applications completely and

makes it difficult to share data among them, as
explained in the following.
 Each class loader has usually one parent class
loader, defining a parent-delegation model and
forming a class loader tree with the system class
loader at the root. The class loaders are
configured in such a manner that they delegate
class loading requests at first to their parent, and
only if the parent could not load the requested
class, the current class loader tries to load the
class. That way, a class is loaded only once in
the chain from the current class loader up to the
root, usually the system class loader. All classes
and objects in a certain class loader can "see"
and use only the loaded classes from the parent
class loader, but not from the child class loader
or other class loaders, located elsewhere. Due to
this fact, objects in two class loaders can only
share data and collaborate if they "see" the
associated class, or in other words, if their class
loaders have the same parents.
 Within this context, there are two kinds of
class loader associated with a loaded class
instance, so called initiating class loaders and so
called defining class loaders [2]. While each
loaded class instance has only one defining class
loader, that is actually loading the related byte
code and finally defining the class instance.
There might be several associated initiating class
loaders, simply by the fact, that they are in the
chain between the requesting class loader and the
defining class loader.

CL 1

CL 2

CL 3

A

B

defining class
loader of A

defining class
loader of B

initiating class
loader of A

Figure 1: Initiating and defining class loaders

An illustrating example is shown in fig. 1, there
are three class loader CL1, CL2 and CL3. The
class loader CL1 is able to load class A and CL3
can load class B, which is inherited from A.
When CL3 is requested to load B, it must first
load its super class A. And since it is not able to
load A, it delegates the request up to its parent

CL2, which in turn delegates the request to CL1.
Finally, CL1 loads A and becomes the defining
class loader of A. The other participating class
loaders become initiating class loaders of A. The
namespace of a class loader, already mentioned
above, can now be defined more exactly, it is
simply a list of classes, for which the class loader
has served as an initiating class loader [2].
 In this paper, we present a novel approach to
configure the class layout within a JVM and show
how this could be used to manage the separation of
Java classes and hence transform the native JVM
into a multi-application environment. For this
purpose, we introduce so called class spaces,
which manage namespaces and the loaded classes
in a customizable manner.
 The paper is organized as follows. Section 2
briefly describes the features of existing Java
application environments and its class loading
approaches with respect to application hosting and
class separation. In section 3, we present the
features of a multi-application framework and our
approach in detail. In section 4, the use of our
approach within a middleware framework is
illustrated. Section 5 concludes the paper and
outlines areas of future work.

2. Java Application Environment
There are various approaches towards application
environments running on top of a native JRE,
which claim to ease and customize the
deployment, loading and running of applications
and the related byte code like Java Web Start [5].
Most of them are not available stand-alone, but
part of another framework like Jakarta Tomcat [6].
In addition, some approaches put various
constraints on the environment and the Java
application to be hosted like Enterprise Java
Beans (EJB) [7], thus they are not generally
suitable for legacy Java applications. Nevertheless,
each approach represents a certain kind of
application framework with particular features,
especially application hosting and class loading,
which are discussed in the following.

2.1 Application Hosting
Multi-application environments provide an
environment for hosting different applications
concurrently, sharing commonly used resources
like code libraries, memory space, network

connections or access to databases within a
single JVM, improving greatly the utilization of
these resources [8,9] in contrast to the usage of a
JVM per application. This is facilitated in a
particular manner, since applications do not need
to cross the borders of their JVM for that
purpose and can collaborate directly without
using RMI, CORBA or similar solutions [10,11].
Particularly in multi-user environments like
Internet-enabled application servers [12,13,14],
when many applications share the same
resources, this feature may be quite important.
 Another objective in this context is the
dynamic loading and unloading of applications.
For example, it is usually not possible to
shutdown a JVM, which hosts several web
services due to the reload of one single service.
 For that purpose and to ensure the proper
execution of applications in the presence of other
hosted applications, each application is placed in
a new namespace in which an application can
load its own classes separately from classes
loaded by other applications, except for the
classes loaded by the framework. This is ensured
by the fact that each class loader delegates class
loading requests at first up to their parents. That
way, parent class loaders get always the first
chance to load the class before its child and all
applications can share data using classes from
the application framework.
 In summary, the major tasks of existing
multi-applications environments are the
concurrent ability of shielding resources of
applications from each other but also to enable
applications to be reloaded and share common
code and data. This is more than ever important
for web application environments.

2.2 Class Loading
An important feature of a Java application
environment is the ability to load classes
dynamically during runtime and extend the
application with additional classes. In this
scenario, there are several, slightly different
approaches based on the common class loader
approach, which are detailed in the following.

Customized Class Location
The origin class loader of Java has a quite
limited way to locate and load classes
dynamically from sources other than the file

system. The obvious way to extend this capability
is the provision of user-defined class loaders which
can access class files over the network, or access
repositories in which the byte code is stored. In
this scenario, the user-defined class loader usually
focuses on the task of how the requested classes
can be loaded. But some of them also handle the
problem of locating the requested class, process
the loaded byte code and use its own mechanism to
resolve the location of the class [14].

Resolving Naming Conflicts
A Java naming space can not contain two different
classes with the same FQCN. Therefore, some
application frameworks use a separate namespace
to hold the classes of each application, whereby
each namespace is managed by its own
classloader, having a parent class loader and
building a tree-like structure, with the system class
loader at the root. And since class loaders always
delegate the class loading requests at first to their
parent, commonly used classes are placed by the
parent class loader in their namespaces. That way,
each application can load its own class,
independently of other hosted applications, but
nevertheless it is able to share data with other
applications, using the classes loaded by the parent
class loaders [3].

Managing Life-Cycle
An important issue of application frameworks is
the loading and executing of applications. For this
purpose, the framework must be able to load and
unload the byte code of a class. But the native JRE
does not support unloading an already loaded
class. Thus, application frameworks use different
namespaces to reload a class; as a result, they
resign to reload the byte code, but instantiate a
new namespace, where the class is "reloaded" [2].

 In summary, there are different approaches of
how applications can be hosted and classes are
loaded. Although this is often done in a pre-
defined way, and the application is neither able to
configure the organization of the namespaces nor
to define where the classes are placed among the
namespaces after they are loaded. However,
common to all approaches is that they do not deal
with how the byte code of the requested classes are
selected and organized in namespaces with respect
to the problems mentioned at the beginning of this

paper. In the following, we will show how these
problems can be addressed and solved using our
approach of customizable Java class separation.

3. Customizable Java Class
Separation
Application frameworks use the class loading
approach of Java with different goals, and many
implementations are heavily based on using
namespaces. What is still missing is the
possibility of defining from which classes an
application is composed, where they can be
found and how they are arranged in namespaces,
so that applications using the same classes in
different variants can coexist and in addition are
able to collaborate. Given an application
framework, this is essential for building an
environment where applications can load classes
which are not shared with anyone else nor can be
shared due to name conflicts, but also can share
classes with other applications or the framework
itself. These issues are the tasks of a multi-
application environment. The required features
are presented in detail in the following and
realized by the proposed approach, presented
afterwards.

3.1 Features
There are mainly two parties which have to deal
with the features of an application framework.
The first one are application developers, which
want to use the framework to implement new
applications on top of it, and the second one are
administrators, who install and configure the
framework and related applications on a certain
computer.

Transparent Handling With Respect To
Existing Application Code
An application framework which forces the
developer to change existing and moreover
running application code to be executable within
the framework, will of course not be accepted
widely. Therefore, a keystone of an application
framework is the transparent handling of new
features, leaving the application developers to
deal with their actual tasks. For example,
approaches which introduce some kind of class
name mangling for hosting variants of the same
class would break legacy application code.

Dynamic Configuration Of Shared And
Separated Classes By Classspace Aware
Applications
Another kind of application developers wants their
application to use special features of the
framework. Particularly with regard to loading
concurrent classes, the configuration of shared and
separated classes should be customizable by the
application. This enables the dynamic extension
with additional functionalities and plugins during
runtime, and eases resolving occurring conflicts.

Static Configuration of Class Layout Depending
On The Application Requirements
When a Java application should be started, the
JVM has to load the required classes before. But
actually, the JVM loads classes only on demand,
and when a class is not found later, the JVM is
usually terminated, since there is nothing to solve
the problem. In contrast, a multi-application
environment should not be terminated due to a
single wrongly configured application. Instead, the
application environment should determine the
required classes before the application starts and
deny the execution if classes are missing.

Customizable Resource Registration During
Runtime
The native class loader concept of Java expects the
specification of class repositories like JAR-files
and file path in the environment variable
CLASSPATH. Though this is fairly well-suited for
standalone applications which are managed by a
single developer and administrator, it limits the
way of how applications can be composed when
adding dynamically new resources like classes or
resource bundles. Thus, the application
environment should not only support the
registration of classes by the administrator before
starting the framework, but also by the application
afterwards during runtime.

3.2 Architectural Approach
In the following, we introduce our architectural
approach of so called class spaces, that specifies
where to place loaded classes and hence defines
the layout of application code within an
application framework.
 An application framework does not only have
the task to load and start the application, but also
to host the application and its classes in memory.

Generally, all classes of an application are
placed within a single namespace. But even if
there is no conflict with classes using the same
class name, some applications ask the framework
to reload or exchange some portion of the
application code like plugins. For this purpose,
additional namespaces are created in which the
new classes can be placed. The former
namespaces exists further, but are no longer
used. This is done rather proprietary, and there is
no way to define where loaded classes have to be
put, in the parent namespace or in the current
namespace. However, particularly this feature is
required when two applications want to share
data as illustrated above. Thus, we wrap so
called class spaces around namespaces. They are
able to monitor which class should be loaded and
can delegate the class loading, customizable
through the application framework, to other class
spaces.
 In fig. 2, there is a class space SCS and two
further class spaces UCS1 and UCS2 as children
of SCS. All objects created by classes in UCS1
will be associated with the class loader of UCS1.
In the case one of these objects creates another
object from a new, yet not loaded class, the class
loader is asked to load the byte code of the
newly requested class. For this purpose, it
determines whether the related class space, in
this case UCS1, is configured to load the class. If
not, it delegates the request up to its parent class
space SCS and its class loader. This is directly
opposed to the original behavior of chained class
loaders, where all class loading requests are at
first directed to the parent class loader. But with
this reversal, the class spaces can be configured
to hold shared classes in the parent class spaces
and unshared classes in the child class spaces.

Class A
Class B

Class C
Class C

System Class Space
SCS

User Class Space
UCS 1

Class D

User Class Space
UCS 2

Class Space
Definition 2

Class Space
Definition3

Class Space
Definition 1

Figure 2: Class Spaces

In the example, objects in UCS1 and UCS2 can be
built from classes with the same name C, but could
rely on different class implementations. On the
other hand, they can share data and collaborate
using classes and objects located in SCS.
 In addition, the configuration of a class space
and the information which classes can be loaded is
combined with the information where to find the
related byte code. A special issue at this point is
the question of how the system should resolve
registration conflicts between parent and child
class space, if both want to register the same class
for loading. The answer is quite simple: all
registrations must be checked against the
configuration of the chained class spaces, and if
there is already a chained class space which
handles the class, the registration is denied. This is
manageable up to a certain degree if the class
spaces are configured properly by the application
framework. But certainly, there are constellations,
which can not always be resolved, i.e. applications,
which want to collaborate using the same class in
different variants. In this case, however, some kind
of adaptation is needed anyway.
 Finally, as a result, the layout of application
code, shared and separated classes is defined
without modifying existing application code. The
configuration process of class spaces and the
distribution of newly loaded classes are completely
transparent to the application. Of course, this is
only guaranteed as long as the application does not
use a self-defined class loader. In this case, it
would be possible, that the foreign class loader
retrieves classes without knowledge of the parent
class loaders and their associated class spaces.
Thus, they would not be able to check future
resource registrations whether the related classes
are already handled by one of the child class
loader.

3.3 Realization
After presenting the basic idea of our approach, the
implementation and its characteristics are
illustrated in this subsection.
 As introduced above, each class space
encapsulates a class loader and its related
namespace. They can be configured, which classes
they are allowed to load and which requests should
be delegated to the parent class space. The
configuration of class spaces can be done statically
by using an XML configuration file given by an

administrator, or dynamically by the application
implemented by a developer. Of course, the
configuration of the class space can be modified
during runtime as long as no conflicts occur as
mentioned above.
 An example of a dynamic configuration is
shown in fig. 3. At first, a new class space app is
created with the class space system as its parent.
Then, a new resource is registered in the class
space, specifying that all classes whose names
begin with org.apache.xerces will be found in
the given JAR-file, and the class space should be
able to load this class. By the way, the dots in the
class name are masked with slashes, since a dot
is a special letter in regular expressions, which
are used to specify the matching pattern.

Figure 3: Using class spaces

At the end of the example, the class space is
requested to load a class, or with other words,
the class is injected into the class space. All
subsequently class loading requests initiated by
this class, respectively its objects, will also be
handled by the class loader of the associated
class space application.
 At this point, it should be stressed that the
class space does not load any class without a
request. The configuration does only specify
which classes can be loaded by the class space
and where to find the related byte code.
 Besides the illustrated dynamic configuration
of class spaces, which is primarily used by
developers, there is also a static configuration
file. It is read when the system is started and
enables administrators to specify the class space
of each application separately. An excerpt of an
example is shown in fig. 4. It defines a class
space called application, with the class space

system as its parent. The class space application is
configured to host classes from the JAR-files
specified in path and the following resource
entries.

Figure 4: Example of a class space definition file

The class space application is not automatically
created, but whenever the system opens a class
space named application, the configuration file is
read, and the class space is configured
respectively. Afterwards, additional resources can
be registered dynamically provided that they do
not cause any conflicts with existing registrations.

4. Application of the Approach
The presented approach has been developed as part
of the middleware framework ODIN and has
proven its suitability and correctness in several
ongoing research projects, which are based upon
this framework like CAT and its associated Internet
platform netzspannung.org [16,17,18]. In this
context, the major goal of ODIN is the provision
of an open programming and runtime environment
for hosting dynamically composed and
concurrently executed applications like Web
Services or Web Agents. In addition, applications
often collaborate and access commonly shared
resources like databases, network connections or
session informations. Consequently, ODIN uses a
single JVM to host multi applications and eases
the collaboration within the same node by enabling
object interconnection across applications without
using CORBA [11] or RMI [19]. Though this
reduces the usage of runtime resources, ODIN has
also to ensure, that applications, which do not want
to interact can be shielded against each other. For
achieving these goals, the Java implementation of
ODIN uses class spaces invented by the presented

ClassSpace app = null;

app = ClassManager.getClassManager().
createClassSpace("application",
"system");

app.registerResource
("org/apache/xerces/.*",
"/usr/lib/xerces-1.4.4/xerces.jar");

Class parser = app.getClassLoader().
loadClass("org.apache.xerces.parsers.
DOMParser");

<space name="application"
parent="system">

 <jar path="/usr/sdk/servlet.jar">
 <resource name="javax/servlet/.*" />
 </jar>

 <jar path="/usr/sdk/xalan.jar
 <resource name="apache/xalan/.*" />
 </jar>

</space>

approach. Their application is briefly presented
in the following.
 As illustrated in fig. 5, ODIN creates a system
class space and a framework class space, which
contain commonly shared byte code like core
Java classes and classes from ODIN itself. In this
example, there are three concurrently hosted
applications App1-3, each put in a separate
application class space. Furthermore, there are
two libraries Lib1 and Lib2, shared by the
applications. They can easily interact by using
classes from Lib1 and Lib 2, and ODIN or Java
core classes, of course. In turn, application
related classes placed in App1-3 are shielded and
do not influence each other.

ODIN

System

App 1 App 2 App 3

system class
space

framework class
space

application class
spaces

Lib 1 Lib 2

Figure 5: Class Space Organization in ODIN

 While this example is quite simple, it might
get much more complex when there are more
class space levels and libraries, which depend
themselves again on other libraries. An actual
example is the latest JRE 1.4.0 from Sun, which
comes with several classes from the Apache
Software Foundation for handling XML files.
Some applications like Jakarta Tomcat [6] or
Apache Cocoon [20] need exactly these classes,
however in different variants. Unfortunately, the
JRE bundles them with other system and core
Java classes within the same JAR file, thus they
can not be simply excluded or replaced. As a
result, there are some workarounds available to
solve this problem, e.g. by arranging and
installing the JAR files in a particular way or
even by extracting the classes from the runtime
library of the JRE. Though this is feasible for
that certain scenario, it remains a workaround,
which have to be checked and adapted for each
application. In contrast to that, using the
presented approach, this problem has been
solved quickly by ODIN, configuring the system
class space not to load the XML related classes
from the JDK, but from another class space,

configured to load the right classes. Moreover, this
can be done separately for each hosted application
and does not require any modification of the
standard Java runtime installation.
 Another guiding principle in ODIN is the
separation of concerns, resulting in a runtime
system, where our approach is used to encapsulate
roles within class spaces like in the example
above. The system class space is formed by the
classes of the JRE and the framework class space
groups classes of ODIN. Both together contain the
middleware kernel of ODIN, which is able to host
dynamically composed applications and to control
their class loading. That way, ODIN uses the
presented approach to control which applications
are allowed to use certain classes, dependent on
their current role in the system.

5. Conclusions
In this paper, we have outlined the request for
multi-application hosting and discussed related
problems of existing solutions regarding
application class layout and class selection. We
have presented a new customizable approach to
host different implementations of the same Java
class concurrently and how to manage, shield and
share these classes within a single JVM, solving
the regarded problems. In this context, we have
introduced so called class spaces, which are based
on the managed separation of loaded classes and
objects within the JVM. After illustrating the
implementation issues, we have presented the
application and suitability of the approach in the
middleware framework ODIN and its capabilities
for hosting dynamically composed and
concurrently executed Java applications.
 There are several issues for future work. For
example, the resource configuration of class spaces
is rather simple and tedious. We are currently
investigating how this could be done automatically
and more comfortably, e.g. by analyzing package
files. Another topic arises from the fact that the
layout of the class space has to be defined by the
application installer. It would be much more
efficient to have a system that adjusts the class
spaces according to the requirements of recently
requested application while considering already
hosted applications. Finally, the presented
approach has been only implemented and
evaluated for the Java Virtual Machine. But it

would be interesting, whether it is adaptable to
other virtual-machine based environments like
Microsoft .NET [21], since the covered problems
seem to be similar.

6. Acknowledgements
The presented approach has been evaluated and
used in the implementation of the Internet
platform netzspannung.org [17]. The related
project CAT [16] is funded by the German
Federal Ministry for Education and Research and
is conducted by the research group MARS from
Fraunhofer Institute for Media Communication,
St. Augustin in cooperation with the University
of Siegen, Germany. Special thanks go to
Monika Fleischmann, Wolfgang Strauss and
Jasminko Novak.

References
[1] Liang, S., Bracha, G. Dynamic Class

Loading In The Java Virtual Machine. Proc.
of the Conference on Object-oriented
Programming, Systems, Languages, and
Applications (OOPSLA). ACM 1998. pp.
36-44.

[2] Venners, B. Inside The Java 2 Virtual
Machine. McGraw-Hill. 1999.

[3] Eckel, B. Thinking in Java. Prentice Hall.
2000.

[4] Lindholm, T., Yellin, F. The Java Virtual
Machine Specification. Addison-Wesley.
1999.

[5] Java Web Start
http://java.sun.com/products/javawebstart

[6] Jakarta Tomcat - Servlet Engine
http://jakarta.apache.org/tomcat/index.html

[7] Monson-Haefel, R. Enterprise Java Beans.
O'Reilly & Associates. 2000.

[8] Fayad, M. E., Schmidt, D. C., Johnson, R.
E. Implementing Application Frameworks:
Object-Oriented Frameworks at Work. John
Wiley & Sons. 1999.

[9] Lewis, T. Object Oriented Application
Frameworks. Manning Publications Co.
1995.

[10] Orfali, R., Harkey, D. Client/Server
Programming with Java and Corba. John
Wiley & Sons, Inc. 1998.

[11] Marvic, R., Merle, P., Geib, J.-M. Towards a
Dynamic CORBA Component Platform.
Proc. of International Symposium on
Distributed Objects and Applications. 2000.
pp. 305-314.

[12] Latteier, A. Bobo and Principia: An Object-
Based Web Application Platform.
WebTechniques. February 1999.

[13] Sun Open Network Environment (ONE)
http://www.sun.com/sunone

[14] Apache Server Framework Avalon
http://jakarta.apache.org/avalon/framework/in
dex.html

[15] Gong, L. Secure Java Class Loading. IEEE
Internet Computing, Vol. 2, Nr. 6, pp. 56-61.
1998.

[16] Open Distributed Network Environment
http://odin.informatik.uni-siegen.de

[17] Fleischmann, M., Strauss, W. Communication
of Art and Technology (CAT). IMK/MARS,
GMD St. Augustin.
http://imk.gmd.de/images/mars/files/Band_1_
download.pdf

[18] netzspannung.org, Communication Platform
for Digital Art and Media Culture.
http://netzspannung.org

[19] Java Remote Method Invocation.
http://java.sun.com/products/jdk/rmi

[20] Apache Software Foundation. Apache
Cocoon. 2001. http://xml.apache.org/cocoon

[21] Farley, J. Microsoft .NET vs J2EE: How do
they stack up. O'Reilly. 2001.

